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We derive the dispersion relation of Bloch modes in a fishnet metamaterial in the optical frequency domain.
The dependence of the longitudinal wave vector component on the transverse one and the frequency, which
governs diffraction and dispersive spreading of localized light excitations, respectively, are analyzed. We show
that this type of metamaterial exhibits an involved anisotropic behavior with diffraction changing the sign in
passing even a zero diffraction point. For completeness we derive furthermore a formal angle-dependent
effective refractive index which exhibits discontinuities. Thus we conclude that an effective refractive index
tends to get meaningless and that only the dispersion relation predicts reliably light propagation in metamate-
rials. The results are double checked with those obtained from a retrieval algorithm based on angular resolved
reflection/transmission data of a finite slab. Excellent agreement is observed.
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Optical metamaterials �MMs� are a novel class of artificial
matter.1 They derive their properties primarily from an ap-
propriately chosen geometry of the unit cells the MM is
composed of. These unit cells are usually periodically ar-
ranged. Currently it may be anticipated that the most prom-
ising applications of MMs are the perfect lens2 and the
cloaking device.3 Implementation of both concepts requires
the understanding of light propagation in bulk rather than
single layer MMs beyond normal incidence. It is generally
assumed that the wavelength of the propagating field in MMs
is much larger than the period of the arrangement and thus
the MM is considered as an effectively homogeneous me-
dium, which may be characterized by effective material
parameters.4 In doing this, the respective normal modes are
assumed to be plane waves. However, it was pointed out
recently that this assumption is critical in nowadays feasible
MMs for the optical domain.5 Violation of the above condi-
tion will entail that nonlocal effects will come into play
evoking spatially dispersive behavior, in addition to the an-
ticipated anisotropy. Because the exploitation of material
properties not available in nature will open the realm of op-
tical devices with unprecedented functionalities it is inevi-
table to completely understand the physics of light propaga-
tion in these materials. This concerns primarily the
assignment of effective material parameters and includes the
difference between material and wave parameters.

The simple example of a uniaxial crystal will help to state
the issue. The arrangement of atoms, or the crystal’s symme-
try, together with the electronic properties yields a
frequency-dependent dielectric tensor which is in this case an
ellipsoid. The three principal axes, where two are equal, de-
fine the relevant dielectric functions �i���, which represent
the material parameters. Based on these two dielectric func-
tions the dispersion relation of two unlike normal modes can
be derived. For a fixed frequency this dispersion relation can
be displayed as two isofrequency surfaces; the principal axes
of which are defined by the material parameters. Fixing the
direction of the wave vector, the intersection points with
these surfaces provide the refractive indices no,eo��� of these
two modes propagating in this particular direction, the wave
parameters. Furthermore, the vector normal to these surfaces

defines the direction of energy flow. It is evident that for the
extraordinary wave, material and wave parameters equal
only along the principal axes whereas they coincide for the
ordinary wave in all directions ���1 or 2���=no����. Thus, it
is clear that the assignment of a global effective refractive
index is only meaningful if the isofrequency surface is a
sphere. Finite beams are composed of a bundle of normal
modes �finite angular spectrum�, each of them pointing in a
different direction. Thus the curvature of the isofrequency
curves determines the strength and the sign of diffraction. In
anisotropic, but homogeneous materials diffraction may vary
in strength for the extraordinary beam but it is always nor-
mal. For the ordinary beam diffraction is invariant. The situ-
ation changes in periodic media as waveguide arrays6 and
photonic crystals,7 where diffraction may become anomalous
or can even be arrested, with the latter implying that the
propagation of beams becomes possible which does not
modify their profile. Thus, it can be anticipated that this be-
havior will likewise occur in MMs. It will be useful to keep
this picture in mind in interpreting light propagation in bulk
MMs and in designing MMs for applications.

To date there is no access to material parameters of MMs.
This would require ab initio calculations for an electron gas,
confined in the respective unit-cell geometry, in very large
systems �in terms of solid-state theory� which exceeds by far
the current CPU performance. Up to now the distinction be-
tween material and wave parameters did not play a signifi-
cant role in the literature, except in a very recent paper,5

because only normal incidence of a plane wave was consid-
ered. However, to translate the various MM concepts into
practical devices, this limitation has to be lifted. For ex-
ample, to realize a perfect lens n=−1 is required for all trans-
verse spatial frequencies. This sheds light on the image for-
mation process using MM lenses. To date mostly an intuitive
approach based on arguments of geometrical optics has been
used to explain this perfect imaging. This approach is only
useful if the material is effectively homogeneous and isotro-
pic. Otherwise one has to resort to the dispersion relation
�isofrequency curves� of Bloch modes �BMs� to derive the
imaging properties based on wave optics arguments.
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To date the most prominent numerical technique for dis-
closing the optical properties of MMs of finite thickness �cal-
culation of the longitudinal wave vector component on the
transverse one, assignment of effective parameters� is based
on the inversion of the reflection �R� and transmission �T�
coefficients of a plane wave at a slab, characterized by both
an isotropic index and impedance.4 Although the angular de-
pendent spectral response of MMs was analyzed8 this ap-
proach has been developed for normal incident fields only,
or, associating the z axis with the principal propagation di-
rection, for vanishing transverse wave vectors kx/y thus cir-
cumventing the crucial issue of wave vs material parameters.
As already pointed out genuine imaging applications require
that the wave vector varies on the surface of a sphere �nega-
tive effective refractive index independent of kx/y�. Thus the
calculation of the longitudinal as a function of both trans-
verse wave vector components �or the angle of incidence� in
bulk MMs is still in order. In addition to these issues it was
shown in Ref. 9 that another effect may even prevent the
assignment of effective wave parameters. This will be the
case if higher-order BMs are less or comparably damped as
the fundamental BM. Overall the presence of such higher
modes might cause the appearance of a series of anomalous
refractive effects, as commonly known for photonic
crystals.10

It is the aim of this contribution to shed some additional
light on the above issues. The key questions to be answered
are the following: �1� Can the excitation of higher-order BMs
be suppressed? �2� If this is possible, which type of isofre-
quency curve, and thus refraction and diffraction properties,
arises from the dispersion relation? �3� Is it possible and
meaningful to introduce an effective index? �4� Do the re-
sults derived from the retrieval algorithm �valid for any
thickness� and the dispersion relation �strictly valid only for
infinite thickness� converge and which thicknesses are re-
quired for convergence? The first issue was already dealt
with recently11 and strategies have been put forward to avoid
the excitation of higher-order BMs where it turned out that
they can be fairly easily suppressed in the so-called fishnet
structure. Upon technological considerations and experimen-
tal studies this structure has been found to be a promising
MM with reasonable losses in the optical domain12–14 and
the potential for a bulk MM.15 Thus it seems reasonable to
focus our studies on this MM geometry. Although the MM
studied will determine the particular form of the dispersion
relation the general results of our investigations will hold for
a wide class of MMs.

First, we shall derive the dispersion relation of BMs in
this MM. These results are then compared with those re-
trieved from R and T for a finite MM slab at oblique
incidence.20 From both methods an effective refractive index
will be derived and compared. This refractive index is no
longer a global wave parameter which coincides with the
material parameter but rather represents a wave parameter
which varies with the angle of incidence. Our key result will
be that light propagation in MMs can be fully understood by
inspecting the dispersion relation whereas it seems to be
meaningless to introduce an effective index the plane wave
experiences. Even in cases where it can be defined it shows a
complex behavior which is likely triggered by anisotropy

and nonlocal effects in the MM. Thus it is impossible to
characterize a MM of finite thickness by a single complex
function of frequency. There are even situations where this
effective index ceases to be meaningful at all because it be-
comes discontinuous. The structure is shown on top of Fig.
1.

The parameters are taken from the literature.12 One fishnet
layer consists of three material layers made of Ag-MgF2-Ag
with thicknesses hAg=45 nm and hMgF2

=30 nm. The wires
that form the fishnet have a width of wx=100 nm and wy
=316 nm. The lateral periods are �x=�y =600 nm. The pe-
riod in the z direction is �z=200 nm. The material between
subsequent fishnets is air. For the calculation of the BM dis-
persion relation kz=kz�kx ,ky , v̄� �v̄=1 /� is the wave number�
the transfer matrix of a layer containing a single unit cell in
the propagation direction was employed. Enforcing Bloch
periodic boundary conditions defines an eigenvalue problem
which can be written as

T̂�kx,ky, v̄�um�kx,ky, v̄� = eikz,m�zum�kx,ky, v̄� , �1�

with um�kx ,ky , v̄� being a vector comprising the tangential
field components of the mth eigenmode in the angular and

spectral Fourier spaces. The transfer matrix T̂�kx ,ky , v̄� is
indicated to depend on the wave number and the transversal
wave vector components. The Floquet-Bloch ansatz for the
field vector provides an algebraic eigenvalue problem that
can be solved numerically with standard matrix routines. The
longitudinal component of the wave vector kz,m�kx ,ky , v̄� as
well as the BMs

Em�r,t� = eikm·r�
G

EG,meiG·re−i�t, �2�

being represented as a superposition of plane waves,16 can be
calculated out of the eigensolutions of Eq. �1�. The quantity
G denotes the reciprocal-lattice vector and m is attributed to
the mode index. If the evolving field in the medium is domi-
nated by a single mode and, in addition, if the expansion of
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FIG. 1. �Color online� Geometry of the fishnet structure �top�.
The �a� real and �b� imaginary parts of the propagation constant kz

vs wave number are shown for the two lowest-order BMs and nor-
mal incidence. Zeroth order—blue solid line; first order—black
dashed line. The results retrieved from R and T of a five-layer slab
are shown by magenta circles.
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this dominating mode as given in Eq. �2� is dominated by a
single plane wave, the material behaves effectively as ho-
mogenous to which effective properties can be attributed.17

The major advantage of such a method that formulates the
eigenvalue problem in the spectral Fourier space is the pos-
sibility to retain a potentially measured material dispersion
and to retain only real valued frequencies. The propagation
constant of the mode will be the only complex quantity, re-
flecting the absorptive nature of the material. The algorithm
we used was described in detail in the literature.18

The dispersion relation assuming a plane-wave propaga-
tion inside the effective medium was also retrieved from R /T
calculations of a finite MM slab consisting of 5 MM periods
in z direction. Five MM periods turned out to be sufficient to
ensure convergence between both approaches. The reflected
and transmitted complex amplitudes were computed using
the Fourier modal method �FMM�.19 On passing we note that
the more equal the dispersion relations with both methods
are, the better the assumption of an effective homogeneous
medium is.

A Drude model was assumed in all simulations to de-
scribe the properties of Ag with the plasma frequency being
�Pla=1.37�1016 s−1 and the collision frequency being
�Col=8.5�1013 s−1, respectively. The latter parameter is at-
tributed to the damping of the electron-density oscillation.
The parameter is also often termed in the literature as �, the
damping. The refractive index of MgF2 was 1.38.

The dispersion relation kz=kz�0,0 , v̄� of the two lowest
BMs is shown in Figs. 1�a� and 1�b�. We restrict all consid-
erations to the solutions with Ikz�0 which decay exponen-
tially for z�0. BMs with a dominant Ey component with
respect to the unit cell in the y direction are shown. The
zeroth and the first order BMs were selected from the infinite
set as they posses the lowest imaginary part in the relevant
domain. We note that in opposite to dielectric periodic media
where for a fixed frequency a finite number of modes with
real valued propagation constants, usually forming the band
structure, and an infinite number of modes with imaginary
valued propagation constants exist, such distinction is not
possible for MM. Here all propagation constants are complex
because of the intrinsic absorptive nature of the materials.
Nevertheless, light propagation will be dominated by eigen-
modes with the lowest imaginary part.

For the zeroth-order BM Rkz is negative between v̄
=6300 and 7500 cm−1. It is the realm of negative refraction
where k and the Poynting vector S are antiparallel. The first-
order BM supports similar negative refraction at larger fre-
quencies but cannot be excited for symmetry reasons. Its
symmetry as compared to the fundamental mode can be in-
ferred from Fig. 2, where the Ey component of the electric
field of the eigenmodes is shown in the intersection plane
between two subsequent layers �e.g., in a central plane be-
tween two fishnets�. It can be seen that the field of the first-
order BM has odd symmetry and cannot be excited from the
outer region with a plane wave that would excite only modes
with an even symmetry. Moreover, below v̄=10 000 cm−1

its imaginary part is much larger than that of the zeroth-order
BM. Thus, an effective index, deduced from the zeroth-order
BM,9 can be formally introduced as nEff�0,0 , v̄�
=kz�0,0 , v̄� /2�v̄ but provides no further insight.

For x-polarized BMs the dispersion relation for both
lowest-order modes is monotonic. No negative refraction is
observed. The chosen asymmetric unit cell causes the reso-
nances in this polarization to occur at larger frequencies.
This polarization is of no relevance to the present study and
is not considered further. For comparison in Fig. 1 kz�0,0 , v̄�
is also shown as retrieved from R /T calculations of a five-
layer MM. Excellent agreement between the Bloch and the
plane-wave approach can be recognized as long as the
zeroth-order BM dominates.

Now we proceed with the case of oblique incidence.
Figure 3�a� shows the dispersion relation �in this case the
isofrequency surface� for the lowest-order BM as a function
of kx for ky =0 and at v̄=6957 cm−1, where �Rkz� is largest at
normal incidence. The values for kx are restricted to kx
	4.37 
m−1 corresponding to an incidence angle of 90°.

Most notably is the shape of Rkz�kx�. If the material could
be described by a global effective index this shape should be
a circle �constant negative refraction and constant anomalous
diffraction; the Poynting vectors point inward�. It is evident
that this is not the case here where diffraction properties
change with increasing transverse spatial frequency because
the curvature of the isofrequency curve varies. First, diffrac-
tion is anomalous, passing a domain of zero diffraction at the
inflection point and showing ultimately normal diffraction
for large spatial frequencies. The consequences for the imag-
ing properties will be discussed elsewhere. The attenuation
�Ikz� varies less than Rkz. The change in the sign of the
curvature basically implies also that the use of an anisotropic
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FIG. 2. �Color online� �a� Amplitude distribution of the y com-
ponent of the electric field of the zeroth-order BM and the first-
order BM in a plane between two fishnets.
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material model is not sufficient as then diffraction would
have the same sign. Instead, the material shows a nonlocal
response.

To clarify the issue whether the effective index is a mean-
ingful quantity it may be formally introduced as

nEff�kx,ky, v̄� = �
1

2�v̄
�kx

2 + ky
2 + kz

2�kx,ky, v̄� , �3�

being of course a wave parameter as discussed earlier. This
effective index can be calculated in two ways: by taking kz
either from the dispersion relation kz�kx ,ky , v̄�, yielding the
index the Bloch wave encounters or retrieving it from R /T
calculations of a homogenous isotropic slab of thickness d,
yielding the index the plane wave in the effective medium
encounters. The latter approach requires the retrieval algo-
rithm to be extended toward oblique incidence. This proce-
dure is outlined elsewhere20 and leads to

dkz = cos−1� 
ckz
s�1 − R2� + 
skz

cT2

T�
ckz
s�1 − R� + 
skz

c�1 + R��	 + 2m� , �4�

where kz
s/c=�k0

2�s/c
s/c−kx
2 are the wave vector components

normal to the surface in the substrate �s� /cladding �c� with
the respective permittivities �s/c and permeabilities 
s/c. The
results are displayed in Fig. 3�b�. Some conclusions can be
drawn. A variable �with angle of incidence� effective index
nEff�kx ,0 , v̄� can be assigned to the MM but provides no
simplification compared to the dispersion relation. The varia-
tion of this index hints clearly to anisotropy and potentially
to spatial dispersion.21,22 Spatial dispersion cannot be derived
from the variation of the index with the transverse wave
vector, but it is likely that the size of the structure compared
to the wavelength leads to nonlocal effects.5 Another inter-
esting result is that the homogenization approach �effective
medium, plane wave as normal modes� is fairly reliable and
that higher-order BMs can be disregarded because the effec-
tive indices derived from both models almost coincide at
least for the real part. The MM behaves like a metal for large
angles of incidence. This can be physically well understood.
The required strong dispersion of the magnetic properties
stems from the excitation of an antisymmetric plasmon po-
lariton resonance. Large angles of incidence impede the ex-
citation of these modes. For a y-polarized wave at grazing
incidence no adequate cut-wire pair exists in the unit cell and
the MM acts as a diluted metal. The sign of the square root in
Eq. �3� was chosen by enforcing InEff�0. No depolarization
occurs.

To gain further insight into the angular resolved MM
properties, the dispersion relation of the zeroth-order BM
was calculated for some fixed, discrete values of kx at ky =0.
The results for kx=0, 1.75 
m−1, and 2.62 
m−1 are shown
in Figs. 4�a� and 4�b�.

The effective index of the BMs derived from Eq. �3� is
shown in Figs. 4�c� and 4�d�. For an increasing kx the spec-
tral domain of negative refraction is shifted toward higher
frequencies. For comparison kz and the effective index, as
deduced from R and T of the finite slab, are likewise shown
for kx=2.62 
m−1. Perfect agreement is observed both for kz
and the index but an unprecedented feature appears at v̄

=7700 cm−1, where RnEff shows a discontinuity and InEff,
although hardly visible, shows a kink in both approaches
used, whereas kz is continuous. One might be inclined to
eliminate this discontinuity by choosing the opposite sign for
the square root in Eq. �3� at either lower or higher frequen-
cies. But by doing so, the consequence is that RnEff is either
positive or negative in the entire domain and InEff is nega-
tive over an extended spectral domain. This would result in a
discontinuity in RnEff�kx� because the signs were unambigu-
ously fixed at normal incidence.

However, this unphysical behavior concerns only the ef-
fective index of both BMs and plane waves and suggests that
its introduction might be sometimes meaningless. But, even
forgetting the above discontinuity for a moment, our results
for oblique incidence have shown that the dispersion rela-
tions exhibit a shape different from those of isotropic, uni-,
or biaxial media, even if only a single BM is relevant. Ob-
viously it is in general not appropriate to describe the optical
properties of a MM by such a global refractive index. Evi-
dently the complexity of a nanostructured periodic material
requires more rigorous means to describe the propagation of
light. Theoretical optics predicts that this is the dispersion
relation of normal modes. It relates all wave vector compo-
nents with the frequency of light and is the only meaningful
physical relation that has to be used. In all our calculations
the results are in full agreement with the physical require-
ments, namely, the relevant wave vector component shows
always a positive imaginary part and no discontinuities nei-
ther in the real nor in the imaginary part. The branch chosen
exhibits the signature of negative refraction only over a nar-
row spectral domain. On the other hand, however, these stud-
ies show also that the homogenization procedure is quite
reasonable because kz=kz�kx , v̄� shows an almost identical
behavior for the zeroth-order BM and the effective plane
wave.

In conclusion, our studies provide a recipe how to de-
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scribe light propagation in a MM. First, one has to derive the
full dispersion relation kz

m=kz
m�kx ,kx , v̄� of all BMs involved.

Only if the fundamental BM �m=0� exhibits much lower
losses than the higher-order BMs reliable results can be de-
rived. Thus this has to be ensured by MM design. Second,
only if the dispersion relation provides a spherical isofre-
quency shape a global effective refractive index which is
likewise a material parameter can be introduced. This holds
likewise for isofrequency surfaces that compare to those of
uni- or biaxial crystals. In this case two or three global indi-
ces might be meaningfully derived as material parameters. In
all other cases the effective index provides no further infor-
mation in addition to the dispersion relation, is a mere wave
parameter, and can even behave unphysically. Third, compar-
ing the results obtained from the dispersion relation with

those retrieved from R /T calculations yields two informa-
tion, namely, how reliable a homogenization approach is and
for which thickness the dispersion relation is applicable. This
work is a first step to quantitatively analyze light propagation
in MMs beyond normal incidence. It might pave the way to
use MMs in applications as it allows to fully understand their
properties.
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